228 research outputs found

    Lecture notes on the design of low-pass digital filters with wireless-communication applications

    Full text link
    The low-pass filter is a fundamental building block from which digital signal-processing systems (e.g. radio and radar) are built. Signals in the electromagnetic spectrum extend over all timescales/frequencies and are used to transmit and receive very long or very short pulses of very narrow or very wide bandwidth. Time/Frequency agility is the key for optimal spectrum utilization (i.e. to suppress interference and enhance propagation) and low-pass filtering is the low-level digital mechanism for manoeuvre in this domain. By increasing and decreasing the bandwidth of a low-pass filter, thus decreasing and increasing its pulse duration, the engineer may shift energy concentration between frequency and time. Simple processes for engineering such components are described and explained below. These lecture notes are part of a short course that is intended to help recent engineering graduates design low-pass digital filters for this purpose, who have had some exposure to the topic during their studies, and who are now interested in the sending and receiving signals over the electromagnetic spectrum, in wireless communication (i.e. radio) and remote sensing (e.g. radar) applications, for instance. The best way to understand the material is to interact with the spectrum using receivers and or transmitters and software-defined radio development-kits provide a convenient platform for experimentation. Fortunately, wireless communication in the radio-frequency spectrum is an ideal application for the illustration of waveform agility in the electromagnetic spectrum. In Parts I and II, the theoretical foundations of digital low-pass filters are presented, i.e. signals-and-systems theory, then in Part III they are applied to the problem of radio communication and used to concentrate energy in time or frequency.Comment: Added Slepian ref. Added arXiv ID to heade

    Improved IIR Low-Pass Smoothers and Differentiators with Tunable Delay

    Full text link
    Regression analysis using orthogonal polynomials in the time domain is used to derive closed-form expressions for causal and non-causal filters with an infinite impulse response (IIR) and a maximally-flat magnitude and delay response. The phase response of the resulting low-order smoothers and differentiators, with low-pass characteristics, may be tuned to yield the desired delay in the pass band or for zero gain at the Nyquist frequency. The filter response is improved when the shape of the exponential weighting function is modified and discrete associated Laguerre polynomials are used in the analysis. As an illustrative example, the derivative filters are used to generate an optical-flow field and to detect moving ground targets, in real video data collected from an airborne platform with an electro-optic sensor.Comment: To appear in Proc. International Conference on Digital Image Computing: Techniques and Applications (DICTA), Adelaide, 23rd-25th Nov. 201

    Parallel software implementation of recursive multidimensional digital filters for point-target detection in cluttered infrared scenes

    Full text link
    A technique for the enhancement of point targets in clutter is described. The local 3-D spectrum at each pixel is estimated recursively. An optical flow-field for the textured background is then generated using the 3-D autocorrelation function and the local velocity estimates are used to apply high-pass velocity-selective spatiotemporal filters, with finite impulse responses (FIRs), to subtract the background clutter signal, leaving the foreground target signal, plus noise. Parallel software implementations using a multicore central processing unit (CPU) and a graphical processing unit (GPU) are investigated.Comment: To appear in Proc. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Added header and DO

    Mnemonic function in small vessel disease and associations with white matter tract microstructure.

    Get PDF
    Cerebral small vessel disease (SVD) is associated with deficits in working memory, with a relative sparing of long-term memory; function may be influenced by white matter microstructure. Working and long-term memory were examined in 106 patients with SVD and 35 healthy controls. Microstructure was measured in the uncinate fasciculi and cingula. Working memory was more impaired than long-term memory in SVD, but both abilities were reduced compared to controls. Regression analyses found that having SVD explained the variance in memory functions, with additional variance explained by the cingula (working memory) and uncinate (long-term memory). Performance can be explained in terms of integrity loss in specific white matter tract associated with mnemonic functions
    • …
    corecore